Saltwater? Not in my backyard!

Filtering porewater collected from a salt-intruded field before chemical analysis.

Filtering porewater collected from a salt-intruded field before chemical analysis.

Saltwater – it belongs in the ocean, right? Well, sort of. Saltwater can move inland through flooding during high tides or through the shallow groundwater table. This phenomenon is known as saltwater intrusion, is increasing in frequency as sea levels rise. This can cause big issues in areas like Maryland’s Eastern Shore communities, where farms line the coasts. These farms grow crops which can only handle so much salt, but as more saltwater silently creeps into these fields, these crop’s tolerances are exceeded, killing them. This salt-death can be caused by the drying out of plant roots (Ardón et al, 2017). In the Agroecology lab we want to tackle the issues saltwater intrusion causes on these coastal farms. Cover crops are crops planted during the off-season that cycle nutrients found in the soil, preventing them from leaching away through rainwater. Cover crops can be used to lessen the amount of nutrients that escape these agricultural systems, combating the impacts saltwater intrusion may have on coastal farms (Gómez et al, 2009). Through the proper planting of select cover crops, farms in places like the Eastern Shore may stay in business longer, but it’s going to take some research to figure out the secret formula.

Observing cover crop impact requires lab work. For me, this means working in two places, the greenhouse and the Plant Sciences building. While at the greenhouse, I sort and filter porewater samples. Porewater is water that is found between the small spaces between soil particles, which have been collected from farm soils on the Lower Eastern Shore of Maryland that may be influenced by saltwater intrusion. At the Plant Sciences building, Dani Weissman and Natalie Ceresnak run filtered samples on a colorimeter to detect nitrogen and phosphorus levels, while another sample is used to measure pH, salinity, and conductivity. Soil chemistry plays a direct role in the development of planted crops, and by studying the chemical content of these samples we can find how to properly mitigate the impacts of saltwater intrusion.


References
Ardón, M., Helton, A. M., Scheuerell, M. D., & Bernhardt, E. S. (2017). Fertilizer legacies meet saltwater incursion: Challenges and constraints for coastal plain wetland restoration. Elementa, 5(0), 41. doi:10.1525/elementa.236
Gómez, J. A., Guzmán, M., Giráldez, J. V., & Fereres, E. (2009). The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil and Tillage Research,106(1), 137-144. doi:10.1016/j.still.2009.04.008

Previous
Previous

There’s plenty more where that came from!

Next
Next

What the smell is going on?!